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Dept. of Naval Architecture and Marine Engineering

University of Michigan, Ann Arbor, MI 48109

Abstract ious design parameters such as ship motion amplitude,
bending moments, impact forces, etc.

Large amplitude, time-domain, wave-body interactions A mixed Euler-Lagrange time-stepping scheme

are studied in this paper for problems with forward (MEL) was first introduced by Longuet-Higgins &

speed. Both two-dimensional strip theory and three- Cokelet (1976) for solving two-dimensional fully non-
dimensional computation methods are shown and com- linear water wave problems. Since then, MEL methods

pared by a number of numerical simulations. In the have also been successfully used to solve fully nonlin-

present approach, an exact body boundary condition ear, three-dimensional wave and wave-body interaction
and linearized free surface boundary conditions are problems (Dommermuth & Yue,1987; Xue et al., 2001;

used. By distributing desingularized sources above the Cao, Schultz & Beck,1990, 1991; Cao, 1991; Cao, Lee

calm water surface and using constant-strength flat & Beck, 1992; Scorpio et al., 1996). The problems

panels on the exact body surface, the boundary in- with MEL computations are the instabilities of the free
tegral equations are solved numerically at each time surface and wave breaking. The instabilities can of-
step. Once the fluid velocities on the free surface ten be eliminated by improved numerical techniques,

are computed, the free surface elevation and poten- but wave breaking is a natural phenomenon that is

tial are updated by integrating the free surface bound- expected to occur in any large body motion or wave

ary conditions. After each time step, the body surface situation. Computations normally are forced to stop

and free surface are regrided due to the instantaneous when wave breaking occurs. Various techniques have
changing wetted body geometry. The desingularized been proposed to continue the computations after wave

source method applied on the free surface produces breaking, but they are still not robust and can lead to
non-singular kernels in the integral equations by mov- nonphysical solutions.
ing the fundamental singularities a small distance out- A compromise between fully nonlinear computa-

side of the fluid domain. Constant-strength flat panels tions and linear theory is the so-called body-exact ap-

are used to model bodies with any arbitrary shape. proach. In the body-exact problem, the body bound-

Extensive results are presented to validate the ef- ary condition is satisfied on the instantaneous wetted

ficiency of the present methods. These results include surface of the body while the linearized free surface

the added mass and damping computations for a mod- boundary conditions are retained. In order to solve for
ified Wigley hull and a S-175 hull with forward speed the hydrodynamic forces due to large body motions

using both two-dimensional and three-dimensional ap- in the body-exact problem, a time-domain approach

proaches. Heave force and pitch moment time his- is preferred. A method to deal with the exact body

tories of a S-175 hull due to a heave motion using boundary condition using a time-domain free surface
a time-domain body-exact strip theory are presented. Green function has been developed by Beck & Magee

Diffraction forces acting on a modified Wigley hull due (1990) for a submerged body performing arbitrary mo-
to a linear head sea incoming wave using fully three- tions. Other researchers such as Lin & Yue (1990)

dimensional method are also obtained. All the com- also have successfully obtained results for a surface-

putational results are compared with experiments or piercing body problem using the time-domain free sur-

other numerical solutions. face Green function method.

In order to develop computationally fast seakeep-

1 INTRODUCTION ing calculations, but still retaining the important non-
linearities, a time-domain body-exact method using

The accurate prediction of wave-induced motions and Rankine sources has been developed. Earlier work

loads are very important in ship and offshore design, on two-dimensional body-exact computations has been

which requires knowledge of the maximum value of vr- given by Zhang and Beck (2006, 2007). They solved
two-dimensional large amplitude radiation and diffrac-

*Address all correspondence to this author. tion problems including water entry and exit. Coin-



parisons with the other numerical calculations and ex-
periments were good.

In this paper, we have continued to develop two-
dimensional and three-dimensional, body-exact com-
putational models together with using a Rankine
source Green function to compute the large amplitude
body motions in waves. The exact body boundary con-
dition is applied on the instantaneous wetted hull sur-
face under z = 0. For the large amplitude compu-
tations, the instantaneous submerged body surface is
repanelized at each time step to capture the nonlinear-
ities due to the changing geometry. The linearized free
surface boundary conditions are used.

To compute the three-dimensional problem re-
sults, two approaches have been followed. The first
is a strip theory in which a series of two-dimensional
problems at different cross-sections are solved at each
time step. Once the boundary value problems have
been solved at each section, Radial Basis Functions
(RBF) are used to compute the longitudinal deriva- Figure 1: Problem sketch and reference frames
tives of the velocity potential on the body surface. In
the second approach, the three-dimensional problem
is solved completely and the derivative of the veloc- (x,y,Z), as shown in Figure 1. The x-axis points out

itthe bw n h -xsuwr.Teoii sa h
ity potential on body is computed directly. For the 1e0w, and the z-axis upward. The origin is at the

Icalm water line at mid-ship.
large amplitude radiation problem with forward speed, A welinet isi.1)0t are to . A velocity potential is introduced to describe the

methods aused compute the hydrodynamic fluid motion by using the above assumptions such that
forces, and both sets of results are compared with ex- the fluid velocity can be expressed as the gradient
periments.

As will be formulated in the following sections, the of potential function, V(Y, t) = V(1 = V(-U(t)x +

three-dimensional solver includes the forward speed ef- 0(X, y, Z t)), where p is the perturbation velocity po-

fects both in the free surface boundary conditions and tential.

the pressure calculations. The derivatives of the poten- The form of the linearized free surface boundary

tial on the hull can be easily computed once the source

strengths have been obtained by solving the boundary 00-- + .W (1)
value problem. In the strip theory calculations, the Ot 0Z
boundary value problem is solved at different cross- P.(
sections and the forward speed correction is only in- ot -pq + U V70 P  (2)

cluded in the pressure computations by computing the
derivative of potential in the x-direction on the hull In order to use an Euler-Lagrange free surface time
using Radial Basis Functions. The computation time stepping scheme, the free surface boundary conditions
in solving the three-dimensional problem is relatively can 1e rewritten in a more convenient form:
more expensive than solving the problem using a time- 6,q 00

- - + . 7q + . W 7q(3)domain strip theory. The accuracy of those results will 6t 0Z
be shown and compared in the following sections. g-.U.Vp- + "Vp (4)

6t p
2 MATHEMATICAL FORMULATION 'where t - t + " V is the time derivative follow-

2.1 Three-Dimensional ing a fluid particle along a prescribed path. The ve-
locity of the particle in moving coordinate system is

A boundary value problem for a vessel travelling in V = (u, v, 0). Here, u and v are the prescribed veloc-
deep water is solved. The vessel moves with forward ities for the horizontal plane motion of the free sur-
speed U(t), and may be undergoing unsteady oscilla- face collocation points. u is allowed to move with the
tions in its six degrees of freedom. The fluid is assumed translation velocity -U, and v is prescribed so that
to be ideal and the flow irrotational. Two coordinates collocation points move on the given paths around the
systems will be employed: the , system is fixed in body.
space, and i system is fixed to the mean position of This formulation has the desired effect of restrict-
the ship and is moving with forward speed U(t) along ing collocation points from passing through the body
the track of the ship. The boundary value problem boundary. An alternative free surface boundary condi-
is solved in the right hand moving coordinate system tion would be to set V = (0, 0, 0), using equations (1)



and (2). In this case and the collocation points a velocity potential V/(y, z, t). In the fluid domain, V/
are fixed on the calm water surface, tracking the free satisfies Laplace's equation
surface elevations at points in the x - y plane like wave
probes. The advantage of this scheme is that no regrid- V2  - 0 (10)

ing of the free surface after each time step is required On the mean free surface, the linearized free sur-
if the body is wall-sided. The disadvantage is that the fce boundary conditions are imposed
free surface slope, Vq, must be computed numerically.
Vqj may be difficult to compute accurately in a three- (t - /z = 0 on z=0 (11)
dimensional problem, especially at the boundaries of + 0 on z=0 (1)
the free surface domain where one sided differencing / H g( 0 on z 0 (12)
must be used. The free surface/body intersection line where z ((y, t) is the free surface elevation, g is the
is where this problem would be most detrimental, acceleration due to gravity. On the instantaneous body

All the velocity potentials should satisfy the boundary, no normal flux is permitted
Laplace equation under the assumption of ideal po-
tential flow. By applying Green's theorem and using a 0V/
Rankine source Green function, the velocity potential ON N + Uotan(r1 5)Ns - Uotan(r1 6)N 2  on SB

can be written as (13)
where N is the two-dimensional unit normal vector,

- f f G(i, )r()ds (5) and is positive out of the fluid. VN is the instanta-
J 'FUSB neous velocity in the normal direction including rota-

1e GT is the source strength on the tional effects. The last two terms are two-dimensional
where G corrections when there is a non-zero pitch angle, 'q5,
boundary, SF is the calm water free surface; and SB(t) or non-zero yaw angle, q6. In the far field, a radiation
is the instantaneous wetted body surface. The exact boundary condition is imposed such that there are no
body boundary condition is incoming waves; also, the water is assumed deep and

the potential vanishes as z - -oc. The initial condi-
i. V 9 = U,(t)ni(t) +VH .r(t) on SB(t) (6) tions at t =0 are

where U0 (t) is the time-dependent translating veloc- V/ = /t = 0 in the fluid domain (14)
ity of the body in the x direction; H is the inward unit
normal on the body surface (out of fluid): n 1 is the com- At each time step a mixed boundary value problem
ponent of unit normal in the x direction; and VH is the must be solved; the potential is given on the free surface
motion velocity including rotational modes of a point and the normal derivative of the potential is known
on the ship surface. on the body surface. In terms of the desingularized

The perturbation potential p must satisfy the ra- sources (as described in the next section) above the free
diation boundary condition such that there must be surface and sources distributed on the body surface,
no incoming waves and, in the deep water problem, p the potential at any point in the fluid domain can be
vanishes as z - -oc. The initial conditions at t = 0 given
can be written as:

N

0 =Ot =0 in the fluid domain (7) V/(x) -( ln x - + f ()G(x )dl (15)
SB?

After solving the boundary value problem, the
force and moment can be determined by using: where SB represent the instantaneous wetted body sur-

face. Ix - jj represents the distance between any point

P f f prds (8) in the fluid domain and the desingularized source point.
J 13t) G(x: ) is a Rankine source Green function

31 ff p~r x ri)ds (9) G(x: )zz=zIn r (16)
S =(17)

2.2 Two-Dimensional Strip Theory where r is the distance between a source point and a

The three-dimensional seakeeping problem can be ap- collocation point: is the source point on the body

proximated by solving a series of two-dimensional prob- boundary.

lems at cross-sections (stations) of the vessel. This is Once the source strengths are found, j can be

valid for long and slender ships. The two-dimensional evaluated by (15), and the velocity on the body VV/

approach used here is based on the work of Zhang and can been obtained. The total pressure is given by

Beck (2007). The method follows the same conventions Bernoulli's equation

as described for the three-dimensional case. The two- O0D/+ 1 0 /V
dimensional flow at each station can be described by P= + +V (18)

Ot 2 OXg~



Under the slender body assumption, the forces oTj is the vector of unknown source strengths. bi is the
acting on the body can be approximated by integrating vector of boundary conditions, bi = 0, on the free
(18) over the instantaneous submerged body surface, surface, bi = U,(t)nl(t) + VH -H(t) on the wetted body
which can be written as surface.

Once the source strengths are known, the particle
F=[dx pNdl (19) velocities on the free surface can be computed. Then

j the free surface conditions are updated by using a 4 th-
f order Runge-Kutta scheme. Meanwhile, the velocity

M ] dxj p(rxN) dl (20) potential on the body surface can also be obtained.

L By using a central time differencing scheme, the pres-
sure acting on the body can be calculated so that the

3 NUMERICAL METHODS force can be obtained by integrating the pressure over
the instantaneous wetted surface. The pressure on the

3.1 Three-Dimensional body surface is given by the Bernoulli's equation

We distribute the desingularized sources above the 0P 1((00)2 + (00) 2 + )

calm water surface. The desingularized distance is cal- - t Ox 2" x D Oz
culated according to the formula D, = LdS (Lee, (23)

1992), where D, is the desingularized distance, S is the The dynamic forces acting on the ship in mode j due to

local grid area, and Ld = 1 is a desingularized parame- a unit motion in mode k can be found by integrating

ter. Constant-strength flat panels are used on the body the consequent pressure over the instantaneous sub-

surface. The instantaneous submerged body surface is merged body surface.

discretized into N quadrilateral elements over which 90 + UD90 k
the source strength is assumed constant. The nonpla- Fjk Pjj dS[-9k ± Uj

nar quadrilaterals are mapped to planar elements by 1 X 2

fitting the corner points in a least-squares sense (Hess 1(( ) ±2 )2 (24)
and Smith, 1964; Newman, 1986). A boundary inte- 2 + Dy + (  )]nj (24)
gral equation can be solved for the unknown panel and In this paper, we compute the derivatives of the veloc-
isolated source strengths. ity potential on the hull directly.

Z (Tj i • V 1 ds + 27Fri 3.2 Two-Dimensional Strip Theory

11j14i J 3.2.1 Body and Free Surface Modeling

rl. VX 1 - U,(t)ni(t) + VH r. (t) Applying the boundary conditions and using equation

j=M+ 114 - l (15), the following integral equations can be solved to

Yi E SB, i = 1....• l determine the unknown source strength.
Al N

±=1 Yi - j A--( j) lnlxc - i+ G )(xc, )dl -(x,) X, E FF

Yi E Sf, i = 11 + 1....•N FF FB

(21) (25)
where

Y, = (xi, yi,zi),aollocation point -(In lx -i -() OG(Xc, )dl= (xC) XFB

n, = (nx, n, nz), unit normal pointing into body FF F(

Sj = a panel integration surface on the body (26)

l -- number of panels on the body surface

N = total number of unknown source strengths where Q = a source point

xc - a point on the real boundary

X = the given normal velocity on the body
When the above summations (21) are applied at N the given potential on the free surface
collocation points (Yi), an N x N linear system results, P = the free surface

Aij r% = bi (22) FB = surfaces on which X is known

where the influence matrix Aij = Gij = 1/(wi - 6)
for collocation points on the free surface and Aij = The integral mixed boundary value equations, (25)

Vi• V7Gi for collocation points on solid boundaries; and (26), can be discretized to form a system of linear



equations. On the free surface, desingularized sources 5(() -2A(3 (30)
are distributed outside of the domain such that the the ot

source points never coincide with collocation or node
points, avoiding singularities. Isolated sources are used ttAt , t At t-At
rather than a distribution, reducing the complexity of [12 [3( " t +t

the influence matrix. The desingularized distance is
given by the square root of the local mesh size. 5 ( )t2At] (31)

The free surface is broken up into an inner and

outer region. The inner region spans four wavelengths The updated free surface and potentials are used
on either side of the body, where the wavelength is to start the mixed boundary value problem at the next
given by the dispersion relation, A 2", given a fre- time step. To ensure consistent free surface resolution
quency of oscillation, w. To resolve the radiated waves, in time, the free surface nodes are relocated to a distri-
30 nodes are distributed per wavelength in the inner bution consistent with the original distribution (based
region. The outer region acts as a numerical beach to on the location of the body intersecting the free sur-
prevent wave reflection. 20 nodes are distributed over face). The values of ( and V are interpolated using
80 wavelengths with exponentially increasing spacing, cubic splines to the new distribution.
as determined by Lee (1992).

The body surface is modeled using panels, which 3.2.3 Section Exit and Entry
are more suitable for arbitrarily shaped bodies. The
resulting discretized mixed boundary value equations One of the main reasons for using the body-exact ap-
are given by proach is the ability to get accurate solutions for large-

amplitude motions, which are non-linear. This includes

NF N13 allowing sections to come out of and go back into the
(
f 
F In IxF _ F 1+ E  (T Bf jIn Ix

F -- dl p(x
F ) water. This is done simply by stopping calculations as

C - f n Si C) a section comes out of the water, then re-initializing
j1 j1 Ali V/ and /jt to zero at that section. As the section en-

(27) ters the water, the two-dimensional problem is solved

as usual. The velocity potentials are used in pressure
NF qF(xB F calculations only after the solution steadies, after three

- 7ro + ( --- nx -+ time steps.
j-1 xg -3 I (28)

12=B, 3 (Xjf ix Tol dl . x(xi) 3.2.4 Forward Speed Corrections

To solve the full three-dimensional problem with for-
In matrix form, equations (27) and (28) are solved ward speed, classical strip theory needs a correction

using LU decomposition. Once the source strengths for the the interaction between sections along the lon-
are known, the fluid velocity on the free surface and gitudinal direction. With non-zero forward speed, the
pressure on the exact body can be computed. pressure equation (18), including the moving node cor-

rection, becomes
3.2.2 Time Evolution 60 1 2 ov
The body is repanelized at each time step using a "rub- P( +  2 ,,= ±-U v V~b gz) (32)

ber band" technique. The number of panels remains
the same for each station, and they are stretched to There is a necessity to find the OV/x term in the
where the exact body intersects the calm water sur- pressure calculation when there is a non-zero forward
face, z = 0. This requires a correction in the OD/ot speed. The method implemented here is the use of
term in equation (18), such that radial basis functions. This can only be done once the

two-dimensional problem is solved at each section. The(o+ = - • (t _ ot-A
Ot 6V) St v V~t  = -At- ) t ",70 t velocity potentials on the body must be known at each

alt- TT At section. The details of this method are discussed in the
(29) following section.

where V t is the velocity potential at time step t, and
vt is the moving node velocity due to repanelization. 3.2.5 Radial Basis Functions

The free surface elevation and potential are up-
dated using the kinematic (11) and dynamic (12) free The forward speed problem can be solved by using a
surface boundary conditions. Time stepping is done radial basis function (RBF) to approximate the OV/x0
using a 3rd-order Adams-Bashforth scheme as shown term in the pressure calculation. Using this method to
below. numerically solve partial differential equations is dis-

(tAt = At[2 3 (0() t cussed by Kansa (1999). A more general discussion of

12 t _16( )tAt + RBFs is presented by Buhmann (2000).



Once the two-dimensional problem is solved for to RBF sphere of influence: accuracy compariso. with w =X2

each section, the velocity potentials at nodes on the 9 - 
Gaussian stddev

entire body are given as a function of the Euclidean 8 v. MO stddev

distance between the nodes.7 7-

gj(x) - g(llx - xjl1) (33) 6-
5-

N

Vy(X) = 9jgj(X) + (N+1 (34)
jl1

N
NZ :0 (35)

S(35) 012 c, as a fraction of the shiplength, L 0.8

where g is one of many possible basis functions. The
final equation (35) for the coefficients aj is to ensure Figure 2: RBF cj comparison

uniqueness. These expansion coefficients are found by RBF sphere of influence: accuracy comparison with W +

setting up a system of N + 1 equations, such that
-- Gausn erro9 i e Gaussian stddev

9- 
G~uuv. MO erdrorev8 -- " €R Inv. MO stddev

- 51

G l (Xl) ... gq (Xl) Ez R

G• qj(x " RNxN (Xi)
91l(XN )  ... .9N (XN) , .... ....

0.2 0.4 0.6 0.8c, as a fraction of the ship length, L

G P ] CR(N+I)x(N+I)
H = pT 0 € Figure 3: RBF cj comparison

and the N + 1 system can be rewritten in matrix form

H a = V, (36) x X 2

with !(XN±1) 0. The interpolation expansion coef- g.(x) (1 + 2 - 1/2 Inverse MQ (41)
ficients can be found after matrix inversion

Using a defined analytic velocity potential as a
= H 1 (37) test, the candidate functions were compared in ac-

curacy of interpolation and approximation to partial
These coefficients can be used to interpolate the derivatives. The analytic potential was of the form

data in three-dimensional space and to find derivatives V/ c 2, with some variation for nodes on the same sta-
at any point. The x-velocity of the fluid is found by tion (x-location). Another function, V cc x2 + 3, was
taking the partial derivative of the basis function with tested as well. The approximate partial x-derivatives
respect to the x-direction. were compared to the known solutions. The Gaussian

N equation (40) and Inverse Multi-Quadratic equation

Ox > Eojg (xi) (38) (41) proved to be the more accurate functions. Their
j-l accuracy depends on the "sphere of influence" term, cj.

Several tests cases were run to determine an the opti-
Several basis fnctions were tested and compared mum value of this variable. They involved computing

b)efore implementation in the code. Of the many func- the partial x-derivative of the RBF approximation and
tions available, the three shown below exhibit the qual- comparing it to the known solution. Both the Gaussian

ity of a "sphere of influence", such that points closer and Inverse Multi-Quadratic functions were evaluated.
to the node of interest have a larger influence on that Mean error and standard deviation were considered as
node benchmarks of comparison. The percentages (based on

the mean absolute value of the exact solutions) of mean
xJ-jl error and standard deviation are shown as functions of

gj (x) Exponential Spline (39) cj in Figures 2 and 3. They indicate that using approx-

imately L/4 yields good results for both functions.
2i-jii2 Implementing this radial basis in the code resulted

gj (x) = , % Gaussian (40) in occasional instabilities, especially for extreme am-



Desinguladzed sources

Panels on-the hull suface Figure 5: Diffraction force (heave force) acting on a

Wigley hull III, r n 0.3, A/L 1.0, 3 ir

Figure 4: Desingularized sources distribution ab~ovep f A A
calm water and flat panels discretization on the hull

plitude motions at higher frequency. The source of the V I

instability is the O/DO term. It is a result of very V
high condition numbers in the matrix inversion rou-
tines, which use LU decomposition. Several attempts . . L 1. 20 21

were made to correct this, but some instabilities re-
mained. The Exponential Spline function, equation Figure 6: Diffraction force (pitch moment) acting on a
(39), although less accurate, had much smaller condi- Wigley hull III, Frn 0.3, A/L = 1.0,
tion numbers. The final selection for use in the code
was an exponential function of power 1.5, as shown in
equation (42). This function was much more accurate
than the Exponential Spline while being better condi- 4.2 Two-Dimensional Strip Theory Results
tioned for matrix inversion.

I XXj 1115Figures 7 through 10 show the force time series for
Cg'(X) 1,5 forced heave motions of the S-175 containership. Posi-() (42) tive heave displacement indicates the vessel is above

it's calm water position. The particulars of the S-
The results were again verified against analytic ye- 175 are given in Table 1. The simulations are for

locity potentials. This RBF gives accurate approxima- small and large amplitudes of heave, at low and high
tions to O/DO, while remaining stable when imple- frequencies of oscillation. The simulations were run
mented in the real code under real conditions. at zero and varying forward speeds corresponding to

Frn 0.0, 0.15, 0.3. The radiation force can be seen at

4 RESULTS AND DISCUSSION these various speeds.

The pitching moment is most sensitive to forward
Numerical convergence tests for both two-dimensional speed. As expected, the radiated force is largest for
and three-dimensional problems have been shown in the high frequency case. Non-linear behavior can be
previous papers (Zhang and Beck, 2007; Zhang, 2007). seen in the large amplitude motion, where the transom

stern section of the body exits and enters the water. It
is especially evident in the high frequency case, as can

4.1 Three-Dimensional Results be seen in Figure 10.

Figure 4 shows the desingularized source distribution
above the z = 0 and the flat panel distributions on a
modified Wigley hull. Figure 5 and Figure 6 show the Lpp(m) 175
force time history results of the wave diffraction prob- B(m) 25.4
lem for a modified Wigley hull at Fn = 0.3 in head D(m) 15.4
seas. The incident wavelength A/L = 1.0, where L is T(m) 9.5
the ship length of the modified Wigley hull A is the in- A(t) 24742

cident wave length;/3 is the angle of wave propagation
measured from the positive sense of the x-axis. Table 1: Parameters of S-175 hull



Heave Force due to Heave: Amp=0.1 meters, o=0.2654 radls Heave Force due to Heave: Amp=4 meters, o=0.2654 rad/s
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Pitch Moment due to Heave: Amp=O.1I meters, o)=0.2654 radls Pitch Moment due to Heave: Amp=4 meters, (o=0.2654 radfs
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Figure 7: S-175 0.1 m forced heave at 0.2654 rad/s Figure 9: S-175 4.0 m forced heave at 0.2654 rad/s

Heave Force due to Heave: Amp=0.1 metersso)1.187 rad/s Heave Force due to Heave: Amp=4 metersmo)1.187 radfs

-displacement -displacement~~ 1 hydrostatic ~ -1hydrostatic

aradiated(Fn=0.00) % - radiated(Fn=0.00)
0 radiated(Fn=0.1 5) < 0---radiated(Fn=0.1 5)

rada0d(F=030 radiated(Fn=0.30)
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time [a] time [a]

Pitch Moment due to Heave: Amp=O.1 meters, (o=1.187 radls Pitch Moment due to Heave: Amp=4 meters, o=1.187 rad/s

-displacement displacement
0 1 hydrostatic 0 1 hydrostatic

>-radiated(Fn=0.00) >radiated(Fn=0.00)

-0 radiated(Fn=0.15) 0 radiated(Fn=0.1 5)
raditedFn=030)radiated(Fn=0.30)

0 5 10 15 0 5 10 15
time [a] time [a]

Figure 8: S-175 0.1 m forced heave at 1.1870 rad/s Figure 10: S-175 4.0 m forced heave at 1.1870 rad/s
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Figure 11: Wigley III Coefficients, Heave due to Heave Figure 13: Wigley III Coefficients, Heave due to Pitch
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4.3 Comparisons tradeoff is that the two-dimensional strip theory is
computationally less expensive, typically by a factor
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